Let You be Bound to Me (and Me to You)

Background and Goal – According to Kaplan’s (1977) Fixity Thesis, the semantic value of indexicals, i.e. first person (1P) and second person (2P) pronouns, is fixed by the context of the actual speech act and cannot be manipulated by any logical operators: I refers to the speaker (s) and you to the addressee (a). This theory has been challenged by empirical facts, especially the ability of 1P/2P in some languages to shift their reference in certain embedded contexts (a.o. Schlenker 2003, Anand 2006). The goal of this paper is to provide novel data from English that support the context-shifting hypothesis and make it more specific. Crucially, my new contribution is to show that there is an intrinsic grammatical dependency between the two context parameters speaker (s) and addressee (a); that’s why 1P can bind 2P (and vice versa) in certain configurations that I draw attention to.

Novel data – The argument is based on VP-ellipsis and focus constructions involving 1P/2P like (1)-(2).

(1) (Romeo to Juliet) - I love you. (Juliet to Romeo) - I do too.
 a. I love you too. (supersloppy reading)
 b. I love me too.

(2) (Tom to Sue, in a ballroom dancing class) Only I make you swirl.
 a. No other dancer makes his partner swirl. (supersloppy reading)
 b. No other dancer makes Sue swirl. (strict reading)

(1) differs from canonical cases of VP-ellipsis, which present sloppy and strict readings that are respectively derived from lambda-bound and referential representations of 3P (a.o. Ross 1967, Fiengo and May 1994). In particular, (1) does not exhibit a standard sloppy reading, but what I call a supersloppy reading in (1a). The elided pronoun you cannot be bound by I since they do not share the same person feature; it is not referentially identical to the antecedent you (i.e. Juliet) either as under the strict reading in (1b). But you in (1a) depends on the reference of I: it refers to the addressee of the second speaker Juliet, namely Romeo. The focus construction in (2) can be interpreted in the same supersloppy way: in (2a), the denotation of you co-varies with the subject in the focus alternatives involving other salient pairs of speaker-addressee (dance partners).

Problems of previous approaches – Previous approaches to 1P/2P fail to derive the data in (1)-(2):
(a) variable binding analyses undergenerate and (b) context shifting analyses overgenerate.

(a) Variable binding analyses treat 1P-2P as variables similar to 3P based on data like such as (3).

(3) Only I did my homework. (from Heim 1991)
 a. λx. x did x’s homework. Nobody else did his/her homework (slippery reading)
 b. λx. x did my homework. Nobody else did my homework (strict reading)

According to a.o. Kratzer 2009, bound 1P/2P are semantically distinct from free 1P/2P: bound 1P/2P are minimal pronouns born featureless and they inherit their morphosyntactic content from their binders due to Feature Transmission. Others like a.o. Heim 2008 attribute the availability of the bound interpretation to the properties of focus constructions: 1P/2P are variables with presuppositions (the referent is the speaker/addressee) and the presuppositional meaning does not have to be satisfied by focus alternatives. All the variants of the variable approach, while explaining sloppy readings in (3), fail to derive the supersloppy reading in (1a) and (2a): they crucially rely on the fact that the two pronouns share the same person feature; but this is not the case in (1)-(2), making binding of you by I impossible.

(b) Context shifting approaches treat 1P/2P as indexicals and assume the existence of context shifting operators (a.o. Schlenker 2003 and Anand 2006 about indexicals in attitude contexts). This approach can derive (1)-(2) by supposing quantification over context (c) as represented in (1’) and (2’).

(1’) λc. s(c) loves a(c)
(2’) λc. s(c) makes a(c) swirl

More specifically, data (4)-(5) show that operators shifting only speaker and addressee should be used in (1)-(2): the other contextual parameters time and location cannot be manipulated in these constructions.

(4) (Tom [in San Francisco, 7PM on June 15th] calls Sue [in Beijing, 11AM on June 16th])
 a. (Tom to Sue) - I like it here. (Sue to Tom) - I do too.
 b. (T to S) - My birthday is tomorrow. (S to T) - Mine is too.

(5) (Tom in SF on June 15th on a videoconference with friends living in different time zones)
PhD; Pronoun: Fake Indexicals as Windows into the Properties from UBC talk; References:

Cable’s footnote (14); Furthermore, the abstraction operators defined in (8) shift all indexicals under their scope unselectively. Additionally, the supersloppy reading becomes available in (6). These assumptions allow us to correctly generate the supersloppy readings in (1)-(2) as in (11)-(12), while ruling out those in (6)-(7) since indexical abstraction operators are only compatible with 1P/2P, not 3P.

(11) \[\langle s \rangle.t_s \text{ love you} \[s, a = \langle \lambda x. \text{ love } D(s) \rangle \] \]

Moreover, I hypothesize that the addressee can be expressed as a function of the speaker as in (10), through the function D ranging over 1P and 2P as defined in (9).

(9) \[D = \langle s, a \rangle < a, s > \]

These assumptions allow us to correctly generate the supersloppy readings in (1)-(2) as in (11)-(12), while ruling out those in (6)-(7) since indexical abstraction operators are only compatible with 1P/2P, not 3P.

(11) \[\langle s \rangle.t_s \text{ love you} \[s, a = \langle \lambda x. \text{ love } D(s) \rangle \] \]

Additionally, they correctly predict the absence of mixed readings in examples such as (13) since the abstraction operators defined in (8) shift all indexicals under their scope unselectively.

(13) \(\langle \text{Tom to Chris} \rangle \) I wish that your sister would call me. \(\langle \text{Chris to Tom} \rangle \) I do too.

a. \(\ldots \) wish that your sister would call me (supersloppy) / that my sister would call you (strict)

b. \(\star \ldots \) wish that your sister would call you (mixed) / that my sister would call me (mixed)

Furthermore, the definition of the function D in (9) correctly allows for binding of 1P by 2P as shown in (14); D thus expresses reciprocity between two dialog participants. Interestingly, this could explain why some children between 2 and 2.5 systematically confuse I and you (a.o. Dale and Crain-Thoreson 1993).

(14) \(\langle \text{Tom to Chris} \rangle \) – You don’t understand me. \(\langle \text{Chris to Tom} \rangle \) – You don’t either.

a. You don’t understand me either. \(\lambda a. \) a does not understand D(a) (supersloppy reading)
b. You don’t understand yourself either. \(\lambda a. \) a does not understand Tom (strict reading)

The availability of D is pragmatically constrained. That’s why supersloppy readings can only occur when the context makes pairs of s-a salient as in (2). Similarly, the supersloppy reading becomes available in (15) if the context provides salient pairs of e.g. student-adviser (other advisers understand their students).

(15) Only you don’t understand me. \(\lambda a. \) a does not understand D(a) (supersloppy reading)

Finally note that the strict readings in all cases standardly require a referential representation of 1P/2P. In Cable’s framework, this derives from the hypothesis that movement of 1P (resp. 2P) can not only leave a trace \(t_s \) (resp. \(t_a \)), but also a trace \(t_s \) (resp. \(t_a \)) indexed with the ‘privileged’ pronominal index 1 (resp. 2).

(16) a. \[\langle t_s \rangle \] \[s, a = \langle g(1) \rangle \]
b. \[\langle t_a \rangle \] \[s, a = \langle g(2) \rangle \]