Korean and Japanese Speculative Pseudoclefts as caseless NP Extraction

(1) exemplifies Korean (K) and Japanese (J) speculative pseudoclefts (SPs). Their schematic structures can be described as in (2), based on Hiraiwa and Ishihara (2012). (Henceforth, I will omit Japanese data, since K/J SPs show almost the same behavior.)

(1) a. [cp Mary-ka e₁ mekun kes]-un sakwa₁-i -ta. (K)
 b. [cp Mary-ga e₁ tabeta no]-wa ringo₁ -da. (J)
 Mary-NOM ate C-TOP apple COP D
 (lit.) ‘What Mary ate is an apple.’

In this paper, I propose that K/J SPs should be generated through overt focus movement of the focus phrase (FP) out of the presupposition CP (PCP), followed by remnant topic movement of the PCP. I argue that the FP is a caseless NP (CLNP) - a nominal without a case marker due to lack of a case projection (based on Bittner and Hale 1996 a.o.), and that this CLNP can be base-generated in a limited set of positions within the PCP. Consequently, seemingly surface-identical SPs in K/J can be derived in more than one fashion.

PARADOX (3) illustrates that K/J SPs do not exhibit Island effects (the Complex NP Condition and the Adjunct Island effect here, based on the assumption that the postpositional phrase (PP) headed by ‘-eykey (to)’ in (3) is an adjunct). This implies that no element moves out of the islands to the higher clause in the PCP (The island is represented as a grey box).

(3) [Mary-ka [PP [DP [e₁ e₂ cikun] salam]-eykey] pwunno-lul nukkin kes]-un i sajin₁-i-ta.
 Mary-NOM took person-to anger-ACC felt C-TOP this-picture-COP-D
 (lit.) ‘What Mary felt anger against the person who took e₂ is this picture.’

However, the possible interpretations of the anaphor in (4) show that something moves from the embedded CP to the higher CP in the PCP. The possibility that the empty category (EC) in (4) is PRO/pro is excluded due to Principle B. Suppose, then, that the EC is a trace/copy of a null operator. If a universal property of null operators is obligatory movement to the higher CP (as assumed in explaining the Island effect within the adjunct clause in parasitic gap constructions), the null operator in (4) also has to move to the higher CP within the PCP. Meanwhile, if the EC is a trace/copy of the FP itself, the anaphor base-generated in the embedded CP must move to the higher CP of the PCP to escape from the PCP, and then to reach its surface.

(4) [Mary₁-ka [Tom₂-i e₁/2 piphanaeṣṣṭa-ko] tulun kes]-un cikacin₁/2-i-ta.
 Mary-NOM Tom-NOM criticized-C heard C-TOP self-COP-DECL
 (lit.) ‘What Mary₁ heard that Tom₂ criticized is self;₁/₂.’

Thus, the paradox in K/J SPs refers to the fact that even if an element must move from the embedded CP to the higher CP within the PCP as shown in (4), it is not constrained by islands, as shown in (3).

PROPOSALS In K/J, CLNPs can be base-generated in [Comp,V], but not in [Spec, vP] where subjects are base-generated (Ahn and Cho 2007, Saito 1985, a.o.), as in (5). CLNPs can also be base-generated adjoined to CPs, accompanied with a prominent accent and followed by a pause, as in (6). I will call CLNPs which are base-generated in that position Edge CLNPs. I assume that Edge CLNPs are a type of left dislocated caseless nominal which shares syntactic properties with hanging topics (HTs) (they are base-generated at the clausal initial position, can be resumed by overt pronouns, do not exhibit island sensitivity and reconstruction effects), but are distinguishable from HTs in that Edge CLNPs can convey contrastive new information (which HTs cannot). Thus, (6) can be an answer to the question “(Among Mary, John, Tom,) did John eat the bread?”

(5) Mary*-ka ku ppang(-ul) mekesse. (6) MARY₁, (kunye;₁-ka) ku ppang-ul mekesse.
 Mary-NOM that bread-ACC ate Mary, she-NOM the bread-ACC ate
 ‘Mary ate the bread.’
 ‘It is Mary that ate the bread.’

Given this, I propose that FPs are CLNPs which are base-generated within the PCP, and consequently K/J SPs can be derived through more than one derivation, as illustrated in (7).

(7) a. extraction from [Comp,V] b. extraction from Edge CLNP position
ISLAND INSENSITIVITY Between the two derivations, if at least one can avoid the locality problem, then K/J SPs will not exhibit island sensitivity. (3a) is derived as follows, using the strategy (7b).

(8) \[\text{this picture} \quad \text{Mary-NOM} \quad \text{took} \quad \text{person-to} \quad \text{anger-ACC} \quad \text{felt-C-COP-DECL} \]

(lit.) ‘What Mary felt anger against the person who took e2 is this picture.’

In (8), the PCP externally merges with the copula. The FP, namely ‘I sajin (this picture)’, is base-generated as an Edge CLNP at the highest position within the PCP. The FP undergoes focus movement to [Spec, CopP], and the PCP undergoes remnant topic movement, which is supported by the fact that the moved PCP must be followed by a topic marker. This avoids the locality violations, since the FP is base-generated outside the island.

b. ANAPHOR BINDING Given that ‘cakicasin’ is an anaphor which must be locally bound (Cole et al., 1990 a.o.), the FP in (4) can refer to both ‘Mary’ and ‘Tom’ when the anaphor is base-generated in [Comp, V] and successive-cyclically moves out of the PCP, using the strategy (7a). If the lowest copy of the anaphor FP is interpreted, the anaphor can refer to ‘Tom’. Meanwhile, if one of the copies of the FP which are locally bound by ‘Mary’ is interpreted, the anaphor can refer to ‘Mary’.

CONSEQUENCES My analysis predicts that a constituent unable to be base-generated as a CLNP within a PCP cannot be a FP. This prediction is borne out through the subject-object asymmetry in Numeral Quantifier (NQ) stranding. I assume that NQs are adjoined to nominals (Bennamoun 1999 a.o.). In (9a), the FP and its NQ can be base-generated as the object in [Comp, V] within the PCP, and then the FP undergoes focus movement. Meanwhile, the reason (9b) is ungrammatical is that the FP and its NQ cannot be base-generated as the subject within the PCP (Recall that CLNPs cannot be base-generated in [Spec, vP] where subjects are base-generated). One might think that the acceptability of (9c) undermines the analysis, since the CLNP and its NQ seem to be able to be base-generated as the subject. However, I suggest that this is because people process ‘holangi twu-mali (tiger two-CL)’ in (9c) as an Edge CLNP, insofar as (9c) is acceptable. This is possible due to the identical surface string. (9d) supports this idea. In (9d), ‘holangi twu-mali (tiger two-CL)’ cannot be processed as an Edge CLNP, since Edge CLNPs cannot follow any other element. If CLNPs could be base-generated as subjects, the ungrammaticality of (9d) could not be accounted for. The prediction is also borne out in restrictions on the adverbal FP. The inner structure of PPs in K/J can be analyzed as [pp NP P]. In K/J, quasi-adjunct PPs (locative and temporal PPs) allow postposition dropping, resulting in adverbal CLNPs, while true-adjunct PPs do not. My analysis expects that FPs as adverbal CLNPs can be locative and temporal only. This expectation is fulfilled as in (10).

(10) \[\text{Tom-i i} \quad \text{ilhan kes-un i hoysa/ *i pang pep-i-ta.} \]

\[\text{Tom-NOM worked C-TOP this company/ this method-COP-D} \]

(lit.) ‘Tom worked in this company/ *with this method.’

IMPLICATIONS This CLNP extraction analysis supports that remnant movement is sanctioned by UG, indicating that the traditional Proper Binding Condition is too strong (Hiraiwa 2010, a.o.). Furthermore, connectivity effects in K/J SPs are natural consequences of the current analysis, since FPs are base-generated in PCPs. Finally, the analysis provides an account of previously unexplained properties of K/J SPs (e.g. NQ stranding asymmetries in PCPs, restrictions on FPs as adverbal CLNPs).